
C++ Programming:

From Problem Analysis

to Program Design, Fourth Edition

Chapter 7: User-Defined Functions II

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 2

Objectives

In this chapter, you will:

• Learn how to construct and use void

functions in a program

• Discover the difference between value and

reference parameters

• Explore reference parameters and value-

returning functions

• Learn about the scope of an identifier

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 3

Objectives (continued)

• Examine the difference between local and

global identifiers

• Discover static variables

• Learn function overloading

• Explore functions with default parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Void Functions

• Void functions and value-returning functions

have similar structures

− Both have a heading part and a statement part

• User-defined void functions can be placed
either before or after the function main

• If user-defined void functions are placed after
the function main

− The function prototype must be placed before
the function main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 5

Void Functions (continued)

• A void function does not have a return type

− return statement without any value is

typically used to exit the function early

• Formal parameters are optional

• A call to a void function is a stand-alone

statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Void Functions without Parameters

• Function definition syntax:

• void is a reserved word

• Function call syntax:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 7

Void Functions with Parameters

• Function definition syntax:

• Formal parameter list syntax:

• Function call syntax:

• Actual parameter list syntax:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 8

Void Functions with Parameters

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 9

Void Functions with Parameters

(continued)

• Value parameter: a formal parameter that

receives a copy of the content of

corresponding actual parameter

• Reference parameter: a formal parameter

that receives the location (memory address)

of the corresponding actual parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 10

Value Parameters

• If a formal parameter is a value parameter

− The value of the corresponding actual

parameter is copied into it

• The value parameter has its own copy of the

data

• During program execution

− The value parameter manipulates the data

stored in its own memory space

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 11

Reference Variables as Parameters

• If a formal parameter is a reference

parameter

− It receives the memory address of the

corresponding actual parameter

• A reference parameter stores the address of

the corresponding actual parameter

• During program execution to manipulate data

− The address stored in the reference parameter

directs it to the memory space of the

corresponding actual parameter

Reference Variables as Parameters

(continued)

• Reference parameters can:

− Pass one or more values from a function

− Change the value of the actual parameter

• Reference parameters are useful in three

situations:

− Returning more than one value

− Changing the actual parameter

− When passing the address would save

memory space and time

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 12

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

Calculate Grade

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 14

Calculate Grade (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 16

Value and Reference Parameters
and Memory Allocation

• When a function is called

− Memory for its formal parameters and

variables declared in the body of the function

(called local variables) is allocated in the

function data area

• In the case of a value parameter

− The value of the actual parameter is copied

into the memory cell of its corresponding

formal parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

Value and Reference Parameters
and Memory Allocation (continued)

• In the case of a reference parameter

− The address of the actual parameter passes to

the formal parameter

• Content of formal parameter is an address

• During execution, changes made by the

formal parameter permanently change the

value of the actual parameter

• Stream variables (e.g., ifstream) should be

passed by reference to a function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

Reference Parameters and Value-
Returning Functions

• You can also use reference parameters in a
value-returning function

− Not recommended

• By definition, a value-returning function
returns a single value

− This value is returned via the return statement

• If a function needs to return more than one
value, you should change it to a void function
and use the appropriate reference
parameters to return the values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 26

Scope of an Identifier

• The scope of an identifier refers to where in

the program an identifier is accessible

• Local identifier: identifiers declared within a

function (or block)

• Global identifier: identifiers declared outside

of every function definition

• C++ does not allow nested functions

− The definition of one function cannot be

included in the body of another function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

Scope of an Identifier (continued)

• Some compilers initialize global variables to

default values

• The operator :: is called the scope resolution

operator

• By using the scope resolution operator

− A global variable declared before the definition

of a function (block) can be accessed by the

function (or block) even if the function (or

block) has an identifier with the same name as

the variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 29

Scope of an Identifier (continued)

• C++ provides a way to access a global

variable declared after the definition of a

function

− In this case, the function must not contain any

identifier with the same name as the global

variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

Global Variables, Named

Constants, and Side Effects

• Using global variables has side effects

• A function that uses global variables is not

independent

• If more than one function uses the same

global variable and something goes wrong

− It is difficult to find what went wrong and where

− Problems caused in one area of the program

may appear to be from another area

• Global named constants have no side effects

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 31

Static and Automatic Variables

• Automatic variable: memory is allocated at

block entry and deallocated at block exit

− By default, variables declared within a block

are automatic variables

• Static variable: memory remains allocated as

long as the program executes

− Variables declared outside of any block are

static variables

− Declare a static variable within a block by
using the reserved word static

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 32

Static and Automatic Variables

(continued)

• The syntax for declaring a static variable is:

• The statement

static int x;

declares x to be a static variable of the type int

• Static variables declared within a block are

local to the block

− Their scope is the same as any other local

identifier of that block

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 33

Function Overloading: An

Introduction

• In a C++ program, several functions can have

the same name

− This is called function overloading or

overloading a function name

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

Function Overloading (continued)

• Two functions are said to have different

formal parameter lists if both functions have:

− A different number of formal parameters, or

− If the number of formal parameters is the

same, then the data type of the formal

parameters, in the order you list them, must

differ in at least one position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

• The following functions all have different

formal parameter lists:

• The following functions have the same formal

parameter list:

Function Overloading (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Function Overloading (continued)

• Function overloading: creating several

functions with the same name

• The signature of a function consists of the

function name and its formal parameter list

• Two functions have different signatures if they

have either different names or different formal

parameter lists

• Note that the signature of a function does not

include the return type of the function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 37

Function Overloading (continued)

• Correct function overloading:

• Syntax error:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

Functions with Default Parameters

• In a function call, the number of actual and

formal parameters must be the same

− C++ relaxes this condition for functions with

default parameters

• You specify the value of a default parameter

when the function name appears for the first

time (e.g., in the prototype)

• If you do not specify the value of a default

parameter, the default value is used

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 39

Functions with Default Parameters

(continued)

• All default parameters must be the rightmost

parameters of the function

• In a function call where the function has more

than one default parameter and a value to a

default parameter is not specified:

− You must omit all of the arguments to its right

• Default values can be constants, global

variables, or function calls

− However, you cannot assign a constant value

as a default value to a reference parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Functions with Default Parameters

(continued)

• Consider the following prototype:

• Assume:

− a, b are int, ch is char, d is double

• Examples of legal calls:

• Examples of illegal calls:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 41

Functions with Default Parameters

(continued)

• Examples of illegal function prototypes with

default parameters:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 42

Programming Example: Classify

Numbers

• In this example, we use functions to rewrite

the program that determines the number of

odds and evens from a given list of integers

• Main algorithm remains the same:

− Initialize variables, zeros, odds, evens to 0

− Read a number

− If number is even, increment the even count

• If number is also zero, increment the zero

count; else increment the odd count

− Repeat Steps 2-3 for each number in the list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 43

Programming Example: Classify

Numbers (continued)

• The program functions include:

− initialize: initialize the variables, such as

zeros, odds, and evens

− getNumber: get the number

− classifyNumber: determine if number is

odd or even (and whether it is also zero); this

function also increments the appropriate count

− printResults: print the results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 45

Programming Example: Main

Algorithm

• Call initialize to initialize variables

• Prompt the user to enter 20 numbers

• For each number in the list

− Call getNumber to read a number

− Output the number

− Call classifyNumber to classify the number

and increment the appropriate count

• Call printResults to print the final results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 47

Summary

• Void function: does not have a data type

− A return statement without any value can be

used in a void function to exit it early

− The heading starts with the word void

− To call the function, you use the function name

together with the actual parameters in a stand-

alone statement

• Two types of formal parameters:

− Value parameters

− Reference parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

Summary (continued)

• A value parameter receives a copy of its

corresponding actual parameter

• A reference parameter receives the memory

address of its corresponding actual parameter

− If a formal parameter needs to change the value

of an actual parameter, you must declare this

formal parameter as a reference parameter in

the function heading

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 49

Summary (continued)

• Variables declared within a function (or block)
are called local variables

• Variables declared outside of every function
definition (and block) are global variables

• Automatic variable: variable for which
memory is allocated on function/block entry
and deallocated on function/block exit

• Static variable: memory remains allocated
throughout the execution of the program

• C++ functions can have default parameters

