C++ Programming:
From Problem Analysis
to Program Design, Fourth Edition

Chapter 7: User-Defined Functions Il

Objectives

In this chapter, you will:

Learn how to construct and use void
functions in a program

Discover the difference between value and
reference parameters

Explore reference parameters and value-
returning functions

Learn about the scope of an identifier

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Objectives (continued)

Examine the difference between local and
global identifiers

Discover static variables
Learn function overloading
Explore functions with default parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Void Functions

 Void functions and value-returning functions
have similar structures

— Both have a heading part and a statement part

» User-defined void functions can be placed
either before or after the function main

* |f user-defined void functions are placed after
the function main

— The function prototype must be placed before
the function main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Void Functions (continued)

« A void function does not have a return type

- return statement without any value Is
typically used to exit the function early

* Formal parameters are optional

A call to a void function Is a stand-alone
statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Void Functions without Parameters

* Function definition syntax:

void functionName ()

{
statements

}

e void IS a reserved word

« Function call syntax:

functionName () ;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Void Functions with Parameters

Function definition syntax:

void functionName (formal parameter list)

{

statements

}

Formal parameter list syntax:

dataType& variable, dataTypeI variable, ...

Function call syntax:

functionName (actual parameter list);

« Actual parameter list syntax:

expression or variable,expression or variable, ...

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Void Functions with Parameters
(continued)

EXAMPLE 7-2

void funexp(int a, double b, char ¢, int x)
{

-
-

-

}

The function funexp has four parameters.

EXAMPLE 7-3

void expfun(int one, inté& two, char three, double& four)
{

}

The function expfun has four parameters: (1) one, a value parameter of type int; (2)
two, areference parameter of type int; (3) three, a value parameter of type char, and (4)
four, a reference parameter of type double.

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Void Functions with Parameters
(continued)

« Value parameter: a formal parameter that
receives a copy of the content of
corresponding actual parameter

« Reference parameter: a formal parameter
that receives the location (memory address)
of the corresponding actual parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Value Parameters

 If a formal parameter is a value parameter

— The value of the corresponding actual
parameter is copied into it

* The value parameter has its own copy of the
data

« During program execution

— The value parameter manipulates the data
stored In its own memory space

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

10

Reference Variables as Parameters

 If a formal parameter is a reference
parameter

— It receives the memory address of the
corresponding actual parameter

* A reference parameter stores the address of
the corresponding actual parameter

« During program execution to manipulate data

— The address stored in the reference parameter
directs it to the memory space of the
corresponding actual parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 11

Reference Variables as Parameters
(continued)

« Reference parameters can:
— Pass one or more values from a function
— Change the value of the actual parameter
* Reference parameters are useful in three
situations:
— Returning more than one value
— Changing the actual parameter

— When passing the address would save
memory space and time

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

12

Calculate Grade

//This program reads a course score and prints the
//associated course grade.

#include <iostream>
using namespace std;

void getScore(int& score);
void printGrade (int score);

int main/{()
{
int courseScore;
cout << "Line 1: Based on the course score, \n"
<< " this program computes the "
<< "course grade." << endl;
getScore (courseScore) ;

printGrade (courseScore) ;

return 0;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

//Line 1
J/Line 2

J/Line 3

13

Calculate Grade (continued)

void getScore(int& score)

{
cout << "Line 4: Enter course score: "; //Line
cin >> score; //Line
cout << endl << "Line 6: Course score is "
<< score << endl; //Line

}

void printGrade (int cScore)
{
cout << "Line 7: Your grade for the course is "; //Line

if (cScore >= 90) //Line
cout << "A." << endl;
else if (cScore >= 80)
cout << "B." << endl;
else if(cScore >= 70)
cout << "C." << endl;
else if (cScore >= 60)
cout << "D." << endl;
else
cout << "F." << endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

main getScore

score

FIGURE 7-1 Variable courseScore and the parameter score

main getScore

score

FIGURE 7-2 Variable courseScore and the parameter score after the statement in Line 5 executes

main

FIGURE 7-3 Variable courseScore after the statement in Line 6 is executed and control goes back to main

main printGrade

FIGURE 7-4 Variable courseScore and the parameter cScore

Value and Reference Parameters
and Memory Allocation

« When a function is called

— Memory for its formal parameters and
variables declared in the body of the function
(called local variables) is allocated in the
function data area

* |In the case of a value parameter

— The value of the actual parameter is copied

Into the memory cell of its corresponding
formal parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

16

Value and Reference Parameters
and Memory Allocation (continued)

* In the case of a reference parameter

— The address of the actual parameter passes to
the formal parameter

« Content of formal parameter Is an address

« During execution, changes made by the
formal parameter permanently change the
value of the actual parameter

« Stream variables (e.q., i fstream) should be
passed by reference to a function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

EXAMPLE 7-7

#include <iostream>
using namespace std;

void funOne(int a, int& b, char wv);
void funTwo(int& x, int y, char& w);

int main()

{

int numl, numZ;
char ch:

numl = 10;

num? = 15;

ch = "A';

cout << "Line 4: Inside main: numl = " << numl
<< ", num2 = " << numZ << ", and ch ="

<< ch << endl;

funOne (numl, num2, ch);

cout << "Line 6: After funOne: numl =
<< ", num2 = " << num2 << ", and
<< ch << endl;

funTwo (num2, 25, ch);

cout << "Line 8: After funTwo: numl =
<< ", num2 = " << num2 << ", and

<< ¢ch << endl;

return 0;

numl
L1}

numl
L1}

//Line
J/Line
J//Line

//Line

J/Line

//Line

J/Line

//Line

o I o]

J//Line
J/Line
J /Line
J/Line

//Line

J//Line
J/ /Line
J//Line

//Line

void funOne(int a, int& b, char v)
{
int one;
one = a;
at+;
b=D>b* 2;
v = "B';
cout << "Line 13: Inside funOne: a = " << a
<< ", b="<<b<<", v="<Kyv
<< ", and one = " << one << endl;
}
void funTwo(int& x, int y, char& w)
{
X++;
y =Y *2;
w="G";
cout << "Line 17: Inside funTwo: x = " << x
<K ", y="<<Ky<< ", andw="<<w
<< endl;
}
Sample Run:
Line 4: Inside main: numl = 10, num2 = 15, and ch = A
Line 13: Inside funOne: a = 11, b = 30, v = B, and
Line 6: After funOne: numl = 10, num2 = 30, and ch
Line 17: Inside funTwo: x = 31, yv = 50, and w = G
Line 8: After funTwo: numl = 10, num2 = 31, and ch

10
11
12

13

14
15
16

17

main

FIGURE 7-5 Values of the variables after the statement in Line 3 executes
one = aj; //Line 9

main funtne

FIGURE 7-6 Values of the variables just before the statement in Line 9 executes

main funOne

FIGURE 7-7 Values of the variables after the statement in Line 9 executes

at+; //Line 10
b=Db* 2; //Line 11
v = "B'; J/Line 12

main funtne

FIGURE 7-8 Values of the variables after the statement in Line 10 executes

main funOne

FIGURE 7-9 Walues of the variables after the statement in Line 11 executes

main funOne

FIGURE 7-10 Values of the variables after the statement in Line 12 executes

cout << "Line 13: Inside funOne: a = " << a
{{“rb=“<{-b{{“,?=“{{v
<< ", and one = " << one << endl; //Line 13

The statement in Line 13 produces the following output:

Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10

cout << "Line 6: After funOne: numl = " << numl
<< ", num2 = " << numZ << ", and ch ="
<< ¢ch << endl; J//Line 6
main

FIGURE 7-11 Values of the variables when control goes back to Line 6

Line 6 produces the following output:

Line 6: After funOne: numl = 10, numZ2 = 30, and ch = A

®x++; J//Line 14
vy =y * 2; //Line 15

main funTwo

FIGURE 7-14 Values of the variables after the statement in Line 15 executes

w = 'G'} ;’;’Line 16
cout << "Line 17: Inside funTwo: x = " << x

<< ", y="<K<Ky<< ", andw="<<w

<< endl; //Line 17
FIGURE 7-15 Values of the variables after the statement in Line 16 executes
Line 17 produces the following output:
Line 17: Inside funTwo: x = 31, yv = 50, and w = G
cout << "Line 8: After funTwo: numl = " << numl

<< ", num2 = " << numZ << ", and ch ="

<< ch << endl; //Line 8

main
FIGURE 7-16 Values of the variables when control goes to Line 8
numZ2 = 31, and ch = G

Line 8: After funTwo: numl = 10,

Reference Parameters and Value-
Returning Functions

* You can also use reference parameters in a
value-returning function

- Not recommended

* By definition, a value-returning function
returns a single value

— This value Is returned via the return statement

* |f a function needs to return more than one
value, you should change it to a void function
and use the appropriate reference
parameters to return the values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

Scope of an Identifier

* The scope of an identifier refers to where In
the program an identifier is accessible

e | ocal identifier: identifiers declared within a
function (or block)

e (Global identifier: identifiers declared outside
of every function definition

e C++ does not allow nested functions

— The definition of one function cannot be
Included in the body of another function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

26

In general, the following rules apply when an identifier is accessed:

1.

(]

Global identifiers (such as variables) are accessible by a function or a block if:

d.

b.

!

The identifier 1s declared before the function definition (block),
The function name is different from the identifier,

All parameters of the function have names different than the name
of the identifier, and

All local identifiers (such as local variables) have names different
than the name of the identifier.

(Nested Block) An identifier declared within a block is accessible:

Only within the block from the point at which it is declared until
the end of the block, and

By those blocks that are nested within that block if the nested block
does not have an identifier with the same name as that of the outside
block (the block that encloses the nested block).

The scope of a function name 1s similar to the scope of an identifier

declared outside any block. That is, the scope of a function name is the
same as the scope of a global variable.

Scope of an Identifier (continued)

« Some compilers initialize global variables to
default values

* The operator : : Is called the scope resolution
operator

* By using the scope resolution operator

— A global variable declared before the definition
of a function (block) can be accessed by the
function (or block) even if the function (or
block) has an identifier with the same name as
the variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

Scope of an Identifier (continued)

« C++ provides a way to access a global
variable declared after the definition of a
function

— In this case, the function must not contain any

identifier with the same name as the global
variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

29

Global Variables, Named
Constants, and Side Effects

Using global variables has side effects

A function that uses global variables is not
Independent

If more than one function uses the same
global variable and something goes wrong

— It is difficult to find what went wrong and where

— Problems caused in one area of the program
may appear to be from another area

Global named constants have no side effects

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

Static and Automatic Variables

« Automatic variable: memory is allocated at
block entry and deallocated at block exit

— By default, variables declared within a block
are automatic variables

 Static variable: memory remains allocated as
long as the program executes

— Variables declared outside of any block are
static variables

— Declare a static variable within a block by
using the reserved word static

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

31

Static and Automatic Variables
(continued)

* The syntax for declaring a static variable is:
static dataType identifier;
* The statement
static int Xx;

declares x to be a static variable of the type int

o Static variables declared within a block are
local to the block

— Their scope is the same as any other local
identifier of that block

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 32

Function Overloading: An
Introduction

* |In a C++ program, several functions can have
the same name

— This iIs called function overloading or
overloading a function name

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 33

Function Overloading (continued)

« Two functions are said to have different
formal parameter lists if both functions have:

— A different number of formal parameters, or

— If the number of formal parameters is the
same, then the data type of the formal
parameters, in the order you list them, must
differ in at least one position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

Function Overloading (continued)

« The following functions all have different
formal parameter lists:

void functionOne (int x)

void functionTwo(int x, double y)

void functionThree (double y, int x)

int functionFour (char ch, int x, double y)
int functionFive (char ch, int x, string name)

* The following functions have the same formal
parameter list:

void functionSix(int x, double y, char ch)
void functionSeven(int one, double u, char firstCh)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

Function Overloading (continued)

* Function overloading: creating several
functions with the same name

* The signature of a function consists of the
function name and its formal parameter list

* Two functions have different signatures if they
have either different names or different formal
parameter lists

« Note that the signature of a function does not
Include the return type of the function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Function Overloading (continued)

« Correct function overloading:

void functionXYZ ()

void functionXYZ (int x, double y)

void functionXYZ (double one, int y)

void functionXYZ (int x, double y, char ch)

e Syntax error:

void functionABC(int x, double y)
int functionABC (int x, double y)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

37

Functions with Default Parameters

* In a function call, the number of actual and
formal parameters must be the same

— C++ relaxes this condition for functions with
default parameters

* You specify the value of a default parameter
when the function name appears for the first
time (e.d., in the prototype)

* If you do not specify the value of a default
parameter, the default value Is used

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

38

Functions wi
(continued)

th Default Parameters

 All default parameters must be the rightmost

parameters of t

 |In a function ca
than one defau

ne function
| where the function has more

t parameter and a value to a

default parameter is not specified:
— You must omit all of the arguments to its right

« Default values can be constants, global
variables, or function calls

— However, you

cannot assign a constant value

as a default value to a reference parameter

C++ Programming: From Problem Analysi

s to Program Design, Fourth Edition 39

Functions with Default Parameters
(continued)

Consider the following prototype:

void funcExp(int x, int y, double t, char z = 'A', int u = &7,
char v = "G', double w = 78.34);

Assume:
—a,bare int, chlis char, diIs double

« Examples of legal calls:
funcExp(a, b, d);
funcExp(a, 15, 34.6, 'B', 87, ch);
funcExp(b, a, 14.56, 'D");

« Examples of illegal calls:

funcExp(a, 15, 34.6, 46.7);
funcExp(b, 25, 48.76, 'D', 4567, 78.34);

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Functions with Default Parameters
(continued)

« Examples of illegal function prototypes with
default parameters:

void funcOne(int x, double z = 23 .45, char ch, int u=45);
int funcTwo(int length = 1, int width, int height = 1);
void funcThree(int x, int& y = 16, double z = 34);

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 41

Programming Example: Classify
Numbers

In this example, we use functions to rewrite

the program that determines the number of
odds and evens from a given list of integers

Main algorithm remains the same:

nitialize variables, zeros, odds, evens to 0
Read a number
f number Is even, increment the even count

 If number is also zero, increment the zero
count; else increment the odd count

Repeat Steps 2-3 for each number in the list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

42

Programming Example: Classify
Numbers (continued)

* The program functions include:

— initialize: initialize the variables, such as
zeros, odds, and evens

— getNumber: get the number

— classifyNumber: determine if number is

odd or even (and whether it is also zero); this
function also increments the appropriate count

— printResults: print the results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 43

void initialize(int& zeroCount, int& oddCount,

{
zeroCount = 0;
oddCount = 0;
evenCount = 0;

}

void getNumber (int& num)
{

}

cin >> num;

int& evenCount)

void classifyNumber (int num, int& zeroCount, intg& oddCount,

int& evenCount)
{
switch (num % 2)
{
case 0:
evenCount++;
if (num == 0)
zeroCount++;
break:
case 1:
case -1:
oddCount++;
} //end switch
} //end classifyNumber

void printResults (int zeroCount, int oddCount, int ewvenCount)

{

cout << "There are " << evenCount <<
<< "which includes " << zeroCount <<

<< endl;

cout << "The number of odd numbers is:

<< endl;
} //end printResults

evens, "

zeros"

" << oddCount

Programming Example: Main
Algorithm

Call initialize toInitialize variables

Prompt the user to enter 20 numbers
For each number In the list

— Call getNumber to read a number

— Output the number

— Call classifyNumber to classify the number
and increment the appropriate count

e Call printResults to print the final results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 45

int main/{()
{
J/Variable declaration
int counter; //loop control variable
int number; //variable to store the new number
int zeros; //variable to store the number of zeros
int odds; //variable to store the number of odd integers
int evens; //variable to store the number of even integers

initialize(zeros, odds, evens); //Step 1

cout << "Please enter " << N << " integers."”

<< endl; //Step 2
cout << "The numbers you entered are: "

<< endl;
for (counter = 1; counter <= N; counter++) //Step 3
{

getNumber (number) ; //Step 3a

cout << number << " "; //Step 3b

classifyNumber (number, zeros, odds, evens); //Step 3c
} // end for loop

cout << endl;
printResults (zeros, odds, evens); //Step 4

return 0;

Summary

* Void function: does not have a data type

- A return statement without any value can be
used in a void function to exit it early

— The heading starts with the word void

— To call the function, you use the function name
together with the actual parameters in a stand-
alone statement

* Two types of formal parameters:
— Value parameters
— Reference parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition a7

Summary (continued)

« A value parameter receives a copy of Its
corresponding actual parameter

* A reference parameter receives the memory
address of its corresponding actual parameter

— If a formal parameter needs to change the value
of an actual parameter, you must declare this
formal parameter as a reference parameter Iin
the function heading

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

Summary (continued)

« Variables declared within a function (or block)
are called local variables

« Variables declared outside of every function
definition (and block) are global variables

 Automatic variable: variable for which
memory Is allocated on function/block entry
and deallocated on function/block exit

 Static variable: memory remains allocated
throughout the execution of the program

« C++ functions can have default parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 49

